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SUPERSONIC CLEAVAGE OF AN ELASTIC STRIP* 

V.M. ALEKSANDROV and B.I. SMETANIN 

The problem of the longitudinal cleavage of an infinite elastic strip by 
a thin smooth rigid wedge is examined. The wedge moves symmetrically 
with respect to the faces of the strip at a constant supersonic 
velocity. Formulas are obtained that govern the stresses in the domain 
of wedge contact with the elastic medium and the displacements of points 
of the slit edge outside the contact domain for certain relationships 
between the parameters of the problem. Conditions are set up for which 
separation of the medium from the wedge surface occurs. Unlike the case 
of wedge motion at a speed less than the Rayleigh velocity /l, 2/, when 
a crack is formed ahead of the wedge, no crack is formed when the wedge 
moves at supersonic speed. The contact problem of the motion of a rigid 
stamp with a flat smooth base at a supersonic speed over the surface of 
an elastic strip was investigated /3/ in a similar formulation. 

1. We will first consider the auxiliary problem (plane deformation) of the motion of a 
concentrated force P at a'constant supersonic velocity V (V>c,>c,, where c1 and cp are, 
respectively, the velocity of sound of longitudinal and transverse waves in the elastic medium) 
over the surface of an elastic strip of thickness k. Let the strip be rigidly clamped along 
the base. Then the boundary conditions of the auxiliary problem in a moving system of coordi- 
nates whose origin is superposed on the point of application of the concentrated force, will 
have the form (6 (5) is the delta-function) 

ov = -P6 (x), Txs = 0 (y = 0). u = u = 0 (y = 42) (1.1) 

It is well-known that such a problem reduces to finding two wave functions connected by 
the boundary conditions and can be solved in closed form /3/. For the system of shock waves 
shown in Fig.1 we present the final expression for the displacement of points of the strip 
upper boundary in the direction of the y-axis 

u (x, 0) = Pfs [rl (5) - D,rl (z + iqh) - D,rI (z + f3h + yh)l (1.2) 

II(t) = 
f 

0 (t,(j) 

-1 (t<o)’ 
@= G 4Y(B -Jri) 

Y=+ 1 
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(G is the shear modulus). Formula (1.2) holds for all z> -2yh when 28>y as occurs in 
Fig.1, and also for all s> -4ph in the case when 3p>y> 28. For another system of shock 
waves shown in Fig.2, the expression for the displacements of points of the strip upper bound- 
ary in the direction of the y-axis has the form 

u (5, 0) = PW[II (z) -D, n (I + 2ph) - DJ (z + 4i3Wl (1.3) 

D, = 2B (By - I)* (1 - R).'A' 

Formula (1.3) holds for all .r> -(p $ J') h when 5fi>y > 38, as well as for alla> -6V 
when v>5fi (Fig.2 corresponds to the case 4b>y>3fl). 

Yl 

Fig.1 

Y 
P 

-Ufsh -2ph 0 0 

‘1’. ,J, 1 

Fig.2 

Fig.3 

Let us set v21c12 = o, then 

p = 1/o - 1, y = 1/@/E) - 1, E = (1 - BY) I2 (1 - Y)l-l< I/* 
(1.4) 

where Y is Poisson's ratio. The table gives values of the quantities v/p, B, WG, D,, D,. D, 
as a function of the parameter a. It can be see that mainly 4>ylp>2, values of v/B > 4 
are reached for small e (for slightly compressible materials) while values of r/p < 2 are 
reached for e close to '1,. 

Using the superposition principle, we will now find the solution of the problem of the 
motion of a normal load Q (3 at supersonic speed over the surface of an elastic strip dis- 
tributed over the segment -a<x.<a. From (1.2) we have 

(1.5) 
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which holds for all s> -2yh $- a, when 2P>Y as well as for all ~>-4fiA+u when@> 
y> 28. This can again be treated so that the relation (1.5) holds for h>y-r (h = h/a is 
the relative strip thickness), when 2P>Y as well as for h>(@)-', when 3p>y>2p. 
Analogously, we find the relationship 

from (1.3), which holds for all r> -(p + ?)A $ a (h>2(p + V)-'), when 5@>y>@ as well 
as for all s> -6fJz -t a (h> (38)-l), when y > 58. 

:+e m m 

2.25 
'I‘ 1+2e h62 2,530 

1+3e 2:828 2,946 
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-2 
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2. We will now formulate the fundamental problem. Let an elastic strip of thickness 2h 
clamped along the bases be cleaved by a rigid wedge of length 2a and apex angle 2a moving at 
constant velocity v>Cr along the x axis (Fig.3). A driving force Q is applied to the wedge; 
we neglect the action of the force of friction in the area IrlQa of wedge contact with 
the strip. By virtue of the symmetry of the problem about the x-axis we can henceforth just 
consider the domain -h< y < 0 and take the boundary conditions to the x-axis by considering 
the quantity 2aa to be commensurate with the magnitude of the elastic displacements (i.e., 
considering the wedge to be fairly thin). Taking account of the assumptions made we will 
have in a moving system of coordinates connected to the wedge 

r,,, (5, 0) = 0, ow (z, 0) = 0 (z < -a) (2.1) 

v(z, 0) = 0 (z > a), V(Z, 0) x --a (a - z) ( I L-c I < a) 

u (G -FL) = II (3, --h) = 0 

We note that the third condition in (2.1) can be replaced by aII (x,0) = 0 (z> a), when 
taking into account that the wedge motion is supersonic. 

We further assume that the relative strip thickness h is so large that (1.5) and (1.6) 
hold. Then by satisfying the boundary conditions (2.1), we arrive in the case when 38 >r 
at an integral equation in the contact pressure Q(E), that is the equality of the right-hand 
of (1.5) to the quantity a(~-u) (Izl<a) byusing (1.5). Analogously, by using (1.6) 
we arrive in the case when y > 38, at an integral equation that is the equality of the right-' 
hand side of (1.6) to the quantity a(~ - a) ( 1 z 1 <a). 

Differentiating these integral equations with respect to x and taking into account that 
II' (t) = 6 (t), we find 

(2.2) 
- r. 

D = D,, li=p+y (2.3) 

D =D,, A =48 (2.4) 

If A > p-1 then using the well-known properties of the delta-function we obtain an ex- 
pression 

p(z) = @a (2.5) 

from (2.2)-(2.4) which simultaneously satisfies the initial integral equations also. We later 
find the driving force from the formula 

<I 
Q= 2a 5 q(E)dE=4aOaa (2.6) 

-cl 
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Taking account of the relationship 511 (t)dt l,e( J t 1 -t), by means of (1.5), (1.6) and 

(2.5) we can find the width of the slit I'(z) -~u(.L', (J) beyond the penetrating wedge in 
each specific case. 

From (1.5) we determine the following: 
for the case Zj?> y 

1‘ (2) = 2a pe $ E,, (I) I’,* (x) + 0, (.c - x1) l-nl (4) (y - p <A-‘) 
r (x) = 2a (2a f- F,, (2) Yi, (z) + E,, (x) I’&* (LX) t 

D, (t - x1) Y,, (.x)} (h-1 < y - p < 2P) 
r (.z) = Za {Za - Za (D, + D,) Y,, (z) + F,, (s) I’,, (I) - 

2aD,Y,, (5) + D, (z - ~1) Y,, (z)) (2h-’ < Y - B) 

(2.7) 

for the case 3p>y>28 

r (z) = 2u (3a -+ F,, (I) Y,, (z) _I- E,, (z) Y,, (5) L 
D, (x - q) Y,, (2)) (y - P < 2h-I) 

l’ (x) = 2a {2a + F,, (z) Y,, (I) - ZaD,Y,, (s) + D, (2 - x1) YU @)I 
(y - p > 2h-‘, 38 - y -< 2k-l) 

r (x) = 2a {2a - 2a (D, i- D,) Y,, (d + Fi1z (d Yo, (z) - 
2aD,Y,, (d + D, (* - 21) y4, (dl (38 - Y > 2i-l) 

Here and henceforth we use the notation 

Analogously, taking account of relations (2.5) we determine from (1.6) 

I’ (x) = 2a {Za + F,, (5) Y,, (4 - 2aD,Y,, (4 -t D, b - 4 1’~ (4) 
(0 < y - 38 -< 2h-‘) 

r (z) = 2a (2~ - 2a (DI + D,) II (5 - x8) ,I- FL3 (d Y,, (x) - 
PaD,Y,h (L) + D, (z - ~1) Y,, (5)) (‘=’ < 7 - 38 < 2P) 

(2.8) 

(2.9) 

(".I()) 

Formulas (2.71, (2.8) and (2.10) can be used under appropriate constraints on I mentioned 
in the description of expressions (1.5) and (1.6). As follows from equalities (2.7), (2.8) 
and f2.10),. r(z) is a piecewise-linear function. For x1 <X < -a the slit width is con- 
stant and equal to 4aa. For + < .rr and certain relationships between the parameters of the 
problem, the slit edges make contact, however, by virtue of the supersonic nature of the wedge 
motion this does not result in a change in the contact pressures. 

3. If h<fi-' but h >:!(fii-y)-' in the case (2.2) and (2.3) or A> (@)-I in the 
case (2.2) and (2.41, then we will have from (2.2), (2.3) and (2.2), (2.4) 

q (+) = @a (x1 < z < a) (3.1) 
4 (z) - D,q (I + 2/3h) = @a (-a < x < x1) 

Taking account of the first relation in (3.1) it follows from the condition 514 -.q s 
z + 2@ < a that 

q(z+@A) =-8a (-a<z<z,) (3.2) 
We obtain from (3.1) and (3.2) 

1 b1 Q r,<OJ 
(I-t-D,) (-a<z<q) 

(3.5) 

We note that the second relation in (3.1) was erroneously taken as a difference equation 
in /3/ (Sect.4, Ch.5). The result (3.3) must be used in place of (4.41)-(4.48) in /3/. 
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Formula (3.3) shows that the contact pressure q(t) is positive everywhere in the contact 

domain (x [<<a for 1 +Dr>O, while it has a jump at the point I = x1 for D, # 0. We 
now find the driving force Q from (2.6) and the slit width from (1.5) and'(l.6). Making the 

calculations, we will have, respectively, 

Q = 4a0a2 [I + D, (1 - fih)l (3.4) 

r(x) = 2a!x 1 

[2a+D,(a+z)+D,(x-xs,)] (x<xz) 

[2a + DI (a + x)] (x2 <x Q - a) (3.5) 

[2a - 2/3hD, + 201% (f3h - a) + D, (x - x:3)] (x < xJ 

r (x) = 2~ x [2a + D, (a + x) + (0,’ + Da) (x-x3)] (xp < x < x3) 

Pa+D,(a+41 (+3<4---a) 
(3.6) 

Separation of the medium from the wedge at the point .z = z, sets in for 1+D,,<O 
(the quantity 1 + D, vanishes, for example, for s = '14, (J z f.oi89 and e = '/ 0 z 1.0092). 

Changing the boundary conditions for the case 1 + D, < 0 and performing appro:riate calcu- 

lations, we find 

Q(z)=@cz (-a<x,<rQa), Q=4a0a%~ (3.7) 

r (x) m= 201 [ZfJh + D, (x - x1) + D, (x - x2) II (x - .x2)1 (+ < ~1) (3.6) 

r (4 = 2a (2fJh (1 - DJ + (x - x3) rD,n (~8 - z) + DJ (5 - xJ} (3.9) 

(x < 4 

The constraints on x mentioned in describing expressions (1.5) and (1.6) must be taken 
into account in (3.5) and (3.81, obtained from (1.5), and in (3.6) and (3.9) obtained from 
(1.6). 

If the 

38 or A; 

Taking 

quantity A< (28)-l in the case (2.2), (2.4), but h> 2(p + JJ-~, when 58 >v> 

(3P)P when v>- 5p, we will have 

q (x) _ @a (x, < 2 < a) 

q (z) - D,q (z + 2Bh) = @a (x3 < x < I,) 
(3.10) 

q (x) - D,q (x + 2W) - D,q (x + 4j3h) @a (-a < J < x3) 

account of the values 

Q(X + 
1 (T?<X<%)~ 

2Bh) = For x (* 1 A_ 4) (--ax<4 
4 (x + 4Bh) = ea (-a Q x < x3) 

(3.11) 

we determine from (3.10) 

(X22) 

If the quantity h<2(8 +V)-' in the case (2.2), (2.3) but h>y-' when 2p>y or 
h > (28))' when 38 >V > 28 then we will have a relationship different from (3.10) by 
replacing 13 by % and D,q (x + 4@) by D,q (x + ph + yh). 

By analogy with the preceding, we then obtain 

1 (xl<x<a) 

q (x) = Oa x (1 -t DJ (xp <x G xd (3.13) 

(1 +D,t-D,) (--a~<.%) 

It is seen from (3.12) and (3.13) that the contact pressure q(x) is positive everywhere 
in the contact domain Iz 1 <<a if 1 + D,>O and, respectively, 
1 +D, +D,>O. As follows from the tables, 

l+D,+D,>-D,2 or 
these conditions are always satisfied for a> 

lis. As before, expressions can be obtained for the cases (3.12) and (3.13) that determine 
the driving force Q and the slit width r(x),and an investigation can be made of the con- 
ditions for,anelastic medium to separate from the wedge. 

We note that in the case of apex angles 2a that are not too small for a penetrating rigid 
wedge, it would be necessary to write the fourth boundary condition in (2.1) in the form L' (2, 
O)= -sinr+(a--s)(I*Ida). Then expanding the sine in series and keeping terms of order cP, for- 
mulas for the contact pressure s(s) can be obtained by the scheme elucidated above by analytic 
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means to terms of order us and for the driving force Q to terms of order a'. The principal 
terms in the expansion of Q in terms of a without taking account of friction forces here 
would remain as before, namely, of order ~2. 
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